有了大数据,客户的习惯和偏好一目了然,设计就能轻易命中客户的心窝;营销也完全不同了,我们知道客户喜欢什么、讨厌什么,更有针对性。
◇ 有了足够多的信息,就能让机器学会做看上去有智能的事情,别管是导航、理解话语、翻译语言,还是识别人脸,或者模拟人类对话。
◇ 随着大数据和机器学习的进一步进展,这个世界出现了新的智慧生物!人类的演进出现了新的分支!
仿佛一夜之间,大数据就成为一个时髦的热词。但其实,大数据并不是全新的事物,Google的搜索服务就是一个典型的大数据运用,只不过以前这样规模的数据量处理和有商业价值的应用太少,现在随着全球数字化、网络宽带化、互联网应用于各行各业,累积的数据量越来越大,越来越多的企业、行业和国家发现,可以利用类似的技术更好地服务客户、发现新商业机会、扩大新市场以及提升效率,才逐步形成大数据这个概念。
整合和挖掘产生商业价值
关于大数据,一个有趣的故事是奢侈品PRADA的。这个品牌的纽约旗舰店中,每当一个顾客拿起一件PRADA进试衣间,衣服上的RFID就会被自动识别,数据会同时被传回总部。以前,如果有一件衣服销量很低,就会被淘汰,但如果RFID传回的数据显示这件衣服虽然销量低,但进试衣间的次数多,那就能另外说明一些问题,也许在某个细节的微小改变就会重新创造出一件非常流行的产品。
随着海量数据的新摩尔定律,数据爆发式增长,又得到更有效应用,世界就开始被改变。
单个数据并没有价值,但随着数据累加,量变就会引起质变,就好像一个人的意见并不重要,但1千人、1万人的意见就比较重要,上百万人就足以掀起巨大的波澜,上亿人足以改变一切。
中国的航班晚点非常多,而美国航班的情况好很多。这其中,有一个重要又简单的做法,就是美国会公布每个航空公司、每一班航空过去一年的晚点率和平均晚点时间,这样客户在购买机票的时候就很自然会选择准点率高的航班,从而通过市场手段牵引各航空公司努力提升准点率。这个简单的方法比任何管理手段都直接和有效。
没有整合和挖掘的数据,价值也呈现不出来。《永无止境》中的库珀如果不能把海量信息围绕某个公司的股价整合起来、串联起来,这些信息就没有价值。
因此,海量数据的产生、获取、挖掘及整合,使之展现出巨大的商业价值,这就是我理解的大数据。在互联网对一切重构的今天,这些问题都不是问题。因为,大数据是互联网深入发展的下一波应用,是互联网发展的自然延伸。目前,可以说大数据的发展到了一个临界点,因此才成为IT行业中最热门的词汇之一。
假如汽车嫁接大数据
我想以对未来汽车行业的狂野想象来说明大数据的威力。
汽车是一项巨大的投资。以一部30万元、7年换车周期来算,折旧加使用每年耗费应在6万左右。但汽车一直以来就是四个轮子、一个方向盘、两排沙发(李书福语)。这么一个昂贵的东西,围绕车产生的数据却少得可怜,行业产业链之间几无任何数据传递。
如果汽车全面数字化,成为大数据载体,会产生什么结果?那意味着汽车可以随时联上互联网,成为一个大型计算系统,可以数字化导航、自动驾驶,每一次维修、每一次驾驶路线、每一次事故的录像、每一天汽车关键部件的状态,甚至你的每一个驾驶习惯(如每一次的刹车和加速)都记录在案。这样,你的车每月甚至每周都可能产生T比特的数据。
假设这些数据都可以存储并分享给相关的政府、行业和企业,那么,保险公司会怎么做呢?如果你车型好,车况好,驾驶习惯好,常走的线路事故率低,过去一年也没有出过车祸,卖保险就可以给予更大幅度的优惠折扣,这样保险公司就完全重构了它的商业模式。在没有大数据支撑之前,保险公司只把车险客户分为四种,第一种是连续两年没有出车祸的,第二种过去一年没有出车祸,第三种过去一年出了一次车祸,第四种是过去一年出了两次及以上车祸的,在大数据的支持下,保险公司可以把客户分为成千上万种,每个客户都有个性化的解决方案,这样保险公司经营就完全不同,对于风险低的客户敢于大胆折扣,对于风险高的客户报高价甚至拒绝,拥有大数据并使用大数据的保险公司比传统公司将拥有压倒性的竞争优势,大数据将成为保险公司最核心的竞争力。
在大数据的支持下,车况信息会定期传递到4S店,4S店会根据情况提醒车主及时保养和维修,特别是对于可能危及安全的问题,在客户同意下甚至会采取远程干预措施,同时还可以提前备货,车主一到4S店就可以维修而不用等待。
对于驾驶者来说,不想开车的时候,在大数据和人工智能的支持下,车辆可以自动驾驶,并且对于你经常开的线路可以自学习自优化。上下班的时候,会根据实时大数据情况,对于你经常开车的线路予以提醒,绕开拥堵点,帮你选择最合适的线路;到城市中心,寻找车位是一件很麻烦的事情,但未来你可以到了商场门口后,让汽车自己去找停车位,等想要回程的时候,提前通知让汽车自己开过来接。
数字化的车辆、大数据应用将带来很多的改变。红绿灯可以自动优化,根据不同道路的拥堵情况自动进行调整,甚至在很多地方可以取消红绿灯;城市停车场也可以大幅度优化,根据大数据的情况优化城市停车位的设计;政府还可以每年公布各类车型的实际排污量、税款、安全性等指标,鼓励民众买更节能、更安全的车。
电子商务和快递业也可能发生巨大的变化。运快递的车都可以自动驾驶,不用赶白天的拥堵的道路,晚上半夜开,在你家门口设计自动接收箱,通过密码开启自动投递进去,就好像过去报童投报一样。
这么想象下来,我认为,汽车数字化、互联网化、大数据应用、人工智能,将对汽车业及相关的长长的产业链产生难以想象的巨大变化和产业革命,具有无限的想象空间,可能完全被重构。
重构商业思维和商业模式
在这里,我想谈谈自己对大数据的看法。
第一,大数据使企业真正以客户为中心。企业是为客户而生,目的是为股东获得利润。只有服务好客户,才能获得利润。大数据的使用能够使对企业的经营对象从客户的粗略归纳(就是所谓提炼归纳的“客户群”)还原成一个个活生生的客户,这样经营就有针对性,对客户的服务就更好,投资效率就更高。
第二,大数据将颠覆企业的管理方式。现代企业的管理方式来源于对军队的模仿,依赖于层层级级的组织和严格的流程,依赖信息的层层汇集、收敛来制定正确的决策,再通过决策在组织的传递与分解,以及流程的规范,确保决策得到贯彻,确保每一次经营活动都有质量保证,也确保一定程度上对风险的规避。在大数据时代,我们可能重构企业的管理方式,通过大数据的分析与挖掘,大量的业务本身就可以自决策,不必要依靠膨大的组织和复杂的流程。大家都是基于大数据来决策,是高高在上的CEO决策,还是一线人员决策,本身并无大的区别,那么企业是否还需要如此多层级的组织和复杂的流程呢?
第三,大数据另外一个重大的作用是改变了商业逻辑,提供了从其他视角直达答案的可能性。现在人的思考或者是企业的决策,事实上都是一种逻辑的力量在主导起作用。我们去调研,去收集数据,去进行归纳总结,最后形成自己的推断和决策意见,这是一个观察、思考、推理、决策的商业逻辑过程。大数据给了我们其他的选择,就是利用数据的力量,直接获得答案。如果我任何时候都可以搜索到答案,都可以用最省力的方法找到最佳答案,这就是一条光明大道。换句话说,为了得到“是什么”,我们不一定要理解“为什么”。我们不是否定逻辑的力量,但是至少我们多了一种新的巨大力量可以依赖。
第四,通过大数据,我们可能有全新的视角来发现新的商业机会和重构新的商业模式。我们现在看这个世界,比如分析家中食品腐败,主要就是依赖于我们的眼睛再加上我们的经验,但如果我们有一台显微镜,我们一下就看到坏细菌,那么分析起来完全就不一样了。大数据就是我们的显微镜,它可以让我们从全新视角来发现新的商业机会,并可能重构商业模型。我们的产品设计可能不一样了,很多事情不用猜了,客户的习惯和偏好一目了然,我们的设计就能轻易命中客户的心窝;我们的营销也完全不同了,我们知道客户喜欢什么、讨厌什么,更有针对性。特别是显微镜再加上广角镜,我们就有更多全新的视野了。这个广角镜就是跨行业的数据流动,使我们过去看不到的东西都能看到了,比如前面所述的汽车案例,开车是开车,保险是保险,本来不相关,但当我们把开车的大数据传递到保险公司,那整个保险公司的商业模式就全变了,完全重构了。
机器人可以自我学习
自然语言的机器翻译,是长期以来人工智能研究的一个重要体现。人工智能从过去到未来都有清晰而巨大的商业前景,是以前IT业的热点,其热度一点不亚于现在的“互联网”和“大数据”。但是,人类过去在推进人工智能的研究上遇到了巨大的障碍,最后几乎绝望。
当时人工智能就是模拟人的智能思考方式来构筑机器智能。以机器翻译来说,语言学家和语言专家必须不辞劳苦地编撰大型词典和与语法、句法、语义学有关的规则,数十万词汇构成词库,语法规则高达数万条,考虑各种情景、各种语境,模拟人类翻译,计算机专家再构建复杂的程序。最后发现人类语言实在是太复杂了,穷举式的做法根本达不到最基本的翻译质量。这条道路最后的结果是,1960年代后人工智能的技术研发停滞不前数年后,科学家痛苦地发现以“模拟人脑”、“重建人脑”的方式来定义人工智能走入一条死胡同,这导致后来几乎所有的人工智能项目都进入了冷宫。
后来有人就想,机器为什么要向人学习逻辑呢,又难学又学不好,机器本身最强大的是计算能力和数据处理能力,为什么不扬长避短、另走一条道路呢?这条道路就是IBM“深蓝”走过的道路。1997年5月11日,国际象棋大师卡斯帕罗夫在和IBM公司开发的计算机“深蓝”进行对弈时宣布失败,计算机“深蓝”因此赢得了这场意义深远的“人机对抗”。
类似的逻辑在后续也用到了机器翻译上。谷歌、微软和IBM都走上了这条道路。就是主要采用匹配法,同时结合机器学习,依赖于海量的数据及其相关相关统计信息,不管语法和规则,将原文与互联网上的翻译数据对比,找到最相近、引用最频繁的翻译结果做为输出。
总而言之,利用这种技术,计算机教会自己从大数据中建立模式。有了足够大的信息量,你就能让机器学会做看上去有智能的事情,别管是导航、理解话语、翻译语言,还是识别人脸,或者模拟人类对话。
假设目前刚刚兴起的穿戴式计算设备取得巨大的进展。这种进展到什么程度呢?就是你家的宠物小狗身上也装上了各种传感器和穿戴式设备,比如有图像采集,有声音采集,有嗅觉采集,有对小狗的健康进行监控的小型医疗设备。小狗当然也联上网,也一样产生了巨大的数据量。这时,我们假设基于这些大数据建模,能够模拟小狗的喜怒哀乐,然后还能够通过拟人化的处理进行语音表达,换句话说,就是模拟小狗说人话,比如主人回家时,小狗摇尾巴,汪汪叫,那么这个附着于小狗身上的人工智能系统就会说,“主人,真高兴看到你回家”。不仅如此,你还可以和小狗的人工智能系统进行对话,因为这个人工智能系统能基本理解你的意思,又能够代替小狗拟人化表达。
新智慧生物会不会诞生
我们继续把这个故事来做延伸,把小狗换成未来的人,人在一生中产生大量的数据,根据这些数据建模可以直接推演出很多的结论,比如喜欢看什么样的电影啊,喜欢什么口味的菜啊,在遇到什么问题时会怎么采取行动等等。
这样的数据累积下来,直到这个人去世。我们有个大胆的想象,这些巨大的数据能否让这个人以某种方式继续存在下去呢?后代有什么问题需要寻求答案的时候,比如在人生的关键抉择时,比如大学要上什么专业、该不该和某个姑娘结婚,可不可以问问这个虚拟的人(祖先)有什么建议呢?答案是当然可以。在这种情况下,数字化生存不仅在人生前存在,也可以在人死后继续存在。人死了,可以在虚拟空间中继续存在。一辈子、一辈子的人故去,这些虚拟的智慧都可以继续存在,假设很多年过去了,这些虚拟智慧的祖宗们太多太多了,活着的子孙们甚至可以组建一个“祖宗联席参谋委员会”,优选那些考得好的(比如中过状元),当过国家高级公务员(比如太守)、当过企业高管(比如CEO)、当过教授、作家等等成功人士的祖宗,专门用于后代的咨询、解惑。
这些说明什么呢?就是随着大数据和机器学习的进一步进展,这个世界出现了新的智慧生物!大数据和机器学习在改变、重构和颠覆很多企业、行业和国家以后,终于到了改变人类自身的时候了!人类的演进出现了新的分支!
有科学家画了一张图,来描述这两种智慧生物。一种是基于生物性的,经过几百万年的进化而来;一种是基于IT技术,基于大数据和机器学习,通过自模拟、自学习而来。前者更有逻辑性,更有丰富的情感,有创造力,但生命有限;后者没有很强的逻辑性,没有生物上的情感,但有很强的计算、建模和搜索能力,理论上生命是无限的。
据统计,现在《纽约时报》一周的信息量比18世纪一个人一生所收到的资讯量更大,现在18个月产生的信息比过去5000年的总和更多,现在我家一台5000元电脑的计算能力比我刚入大学时全校的计算能力更强大。科技进步在很多时候总会超出我们的想象,试想如果未来我们一个人拥有的电脑设备超过全球现在计算能力的总和,一个人产生的数据量超过现在全球数据量的总和,甚至你的宠物狗产生的信息量都超过现在全球数据量的总和,世界会发生什么呢?那就取决于你的想象力了。